
2 The Astronomical Context

Here we learn more about available types of astronomical data, in order from

easy to di�cult.

2.1 Angular and positional measurements

2.1.1 Angles between objects measured \on the sky" { i.e., in

projection

θ

Cross Section View

θ

View in Sky

We can usually measure small angles (< 1�) much better than large angles,

(say, 45�). We �nd accuracies of:

Optical �� � 0.00001 best

Radio �� � 0.00000001 best (Very-Long Baseline

Interferometry (VLBI))

X-ray �� � 200 limited by spacecraft


-ray �� � 1� limited by properties of 
-ray detectors

Useful conversions:

� 1� = 600 = 360000

� 1 radian = 57:3� = 206; 00000
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� 1 mrad = 3:50

� 1 �rad = 0:2100

2.1.2 Coordinate systems in the sky

Positions of objects in the sky can be given in various coordinate systems.

Equatorial Celestial Coordinates (�, �) or (RA, DEC)

The Earth is a pretty good gyroscope, so its axis points a constant direction

in inertial space: the North Celestial Pole (NCP). Declination (� or DEC)

is measured from +90� at that pole to �90� at the South Celestial Pole.

The longitude-like coordinate is called \right ascension" (� or RA) and is

measured (confusingly) in hours (24h= 360�). The zero point is at the \vernal

equinox" (where the Sun is in the sky at the beginning of Spring, also called

the \�rst point of Ares"). RA increases in number in the direction the sky

moves (as the Earth turns). That is, a �xed telescope sees increasing RA

positions with time (1 hour RA per hour of sidereal time).

One peculiarity is that objects at rest on sky have RA/Dec which vary

very gradually with time because of the Earth's precession. This occurs

because the spin axis of the earth is not aligned with the Earth-Sun orbital

plane.
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If the earth was a sphere, this would not a�ect the Earth's spin axis (there

would be no coupling), but tides and rotation distort the earth, so it feels a

net torque from the gravity of the sun/moon. This torque makes the polar

axis (direction to NCP) precess with a period of 26,000 years.

23.5

spin axis 
now

precession
of spin

axis

Every 26,000 years, the RA goes through a big loop, and DEC changes by �23:5
�

.

Positions of objects in the sky change by tens of arcseconds per year. This is easily

detectable, as we can measure the angle to 10
�3

arcsec.

Coordinates quoted for objects are therefore refered to a particular date

or \standard epoch" to remove e�ects of precession. Standards are

� B1950 (going out of use)

� J2000 (coming in)

Here the \B" and \J" refer to technicalities of the model, while \1950" and

\2000" are the reference dates (typically noon on January 1 of the date).

Galactic Coordinates (l; b)

The equator of the galactic coordinate system is the galactic plane (the Milky

Way). l, the longitude coordinate, is zero in the direction of the Galactic

Center. b, the galactic latitude goes from +90� at the North Galactic Pole

(NGP) down to �90� at the SGP.
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2.1.3 Angular separations from coordinates in Sky

First convert from latitude-longitude style coordinates to Cartesian unit vec-

tors, e.g.,

r̂z = z = sin b

r̂x = x = cos b cos l

r̂y = y = cos b sin l

Then use vector formulas to get the angle between the two unit vectors.

cos � = r̂1 � r̂2

is ok when � is not small, but for small separations it becomes inaccurate

(angles pile up around cos � = 1). In that case use the construction

(1/2) |r - r |^
2̂1

1/2) |r + r |^ ^
21length =(

r1̂

r2̂

(1/2)θ 

which yields

tan
1

2
� =

jr̂1 � r̂2j

jr̂1 + r̂2j
:

2.1.4 Solid angles

When observing an object from a point, the solid angle subtended by the

object refers to the fraction of all \lines of sight" that the object covers. In
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analogy with the de�nition of radians, the unit of solid angle, the steradian,

measures the area on the unit sphere that the object covers. Since a sphere

has area 4�r2 there are 4� steradians in the whole sky.

The corresponding number of square degrees is

4�
�
360

2�

�2
= 41252:96 � 40000

since
�
360
2�

�
is the \radius of a unit circle in degrees."

The Sun and Moon are both very close to 0:5� diameter, so their areas are

each �(0:5)2=4 = 0:20 square degrees, or � 1=200000 of the celestial sphere.

(If you think hard, you will see why this tells you that full moonlight is about

105 times dimmer than full sunlight!)

2.2 Brightness measurements

2.2.1 Flux and UBV system

Flux is the energy arriving from a particular object (star, galaxy,...) per unit

area of detector per unit time, so it has units erg cm�2s�1.

distance D

1 cm2

You can see that if the source emits isotropically (same in all directions),

the relation between 
ux F and total luminosity L (erg s�1) is

F =
L

4�D2
:
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Ideally, Flux would be the total energy emitted, but in practice we measure

di�erent wavelength bands with di�erent instruments or detectors. In such

cases we label it by a letter telling which band (e.g. V = visual) and it then

means \energy per area per time arriving in that band."

The most common bands are U= \ultraviolet," B = \blue," V = \visual,"

R = \red," I, J, K = \infrared."
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Light Transmission Through UBV Filters. This graph shows the wavelength ranges

over which the standardized U, B, and V �lters are transparent to light. The U �lter is

transparent to the near-ultraviolet. The B �lter is transparent from about 380 to 550 nm,

and the V �lter is transparent from about 500 to 650 nm.

Band U B V R I J K

Central Wavelength 3650�A 4400�A 5500�A 7000 �A 9000�A 1.25� 2.2�

E�ective width (de�ned
680�A 980�A 890�A 2200�A 2400�A 0.38� :48�

(by area under curve)

logf� (erg cm
�2

s
�1
�
�1
)

-4.37 -4.18 -4.42 -4.76 -5.08 -5.48 -6.40

for m = 0

Note that 1000�A= 100 nm = 0.1�. We write FU, FB, FV, etc. for in-band


uxes. When we need a word for \real, total energy" we say bolometric, so:

Lbol = total luminosity in all bands.

To interpret the last line in the above table, we need to know about the

magnitude scale.
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2.2.2 Apparent magnitude

Apparent magnitude is de�ned logarithmically (property of eye) such that

an increase in magnitude by 5 corresponds to a factor of 100 in apparent

brightness (
ux). Thus, if we have two stars with 
uxes F1 and F2, their

magnitudes obey

m2 �m1 = �2:5 log10

�
F2

F1

�
:

This can be written

m2 + 2:5 log F2 = m1 + 2:5 log F1 � constant:

Once we decide on magnitude for one star all others are determined.

Since stars have di�erent colors (we'll learn why later) we must compare

them in a speci�c color band (i.e. look at them through �lters as shown in

2.2.1). The naked eye is esentially a V �lter. Thus, like 
uxes, magnitudes

are written with a subscript indicating band: mV;mB, etc. Sometimes this

is written just V, B, etc.

The zero point constant derives historically from the ancient Greeks who

named some bright stars as being \of the �rst magnitude" (what we would

now call V= 0):

Arcturus (� Boo) V= �0:06 B�V = 1:23

Vega (� Lyr) V = 0:04 B�V = 0:0

Capella (� Aur) V = 0:8 B�V = 0:79

Note that larger magnitude means \dimmer":

Betelgeuse (� Ori) V = 0:8 B�V = 1:85

Aldebaran (� Tau) V = 0:85 B�V = 1:53
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Larger \color di�erence" means redder color. With good eyes and a dark sky

(not Cambridge!) you can see stars down to V � 6.

How much energy do we receive from Betelgeuse in the V band?

From the previous table, for V=0

FV = 10�4:42
erg

cm2 s�
� 0:089� = 3:4� 10�6

erg

cm2 s
:

But Betelgeuse has V=0.8, so its

FV = (3:4� 10�6)10�0:4(0:8) = 1:6 � 10�6
erg

cm2 s

You can see that the general relation for any band X (e.g. X = U;B;V : : :)

FX = 10�CXWX10
�0:4mX

where CX is the band's log f� for mX = 0, WX is its e�ective width, and mX

is the apparant magnitude of the object in question.

Incidentally, since 10�0:4 = 0:398 is pretty close to e�1 = 0:367, magni-

tudes are not too di�erent from e-folds. This is useful for calculating small

magnitude di�erences in your head, e.g.

0:03 mag � e0:03 � 1 + 0:03 = 1:03 :

So a di�erence of 0.03 mag is about a 3% 
ux di�erence, and so forth.

Another useful fact if you like decibels is that 1 mag = 4 dB. Therefore,

e.g. 2.5 mag = 10 dB = factor of 10 in intensity.

2.2.3 Absolute Magnitude

Absolute magnitude, denoted MB;MV, etc ., is de�ned as the magnitude

an object would have if it were 10 pc away. Thus, since F / D�2 (D the
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distance)

m =M + 5 log

 
D

10 pc

!
=M + 5 logD � 5

(the 2.5 on log 
ux becomes a 5 on log distance). The quantity

m�M = 5 logD � 5

is called the distance modulus.

You should now be able to derive the relation between absolute magnitude

M and physical luminosity L (in a given color band) for an object. These

are properties of the object, not of its distance.

If we know L (or M) for an object then measurement of m gives D, the

distance.

A \standard candle" is a hoped-for class of objects which has a luminosity

(absolute mag) which can be determined easily without knowing its distance.

Notice that color di�erences (e.g. B � V) are independent of distance

and are equal to MB �MV, e.g.

Here are the masses, absolute magnitudes, and (so-called) spectral types

of stars on the \main sequence" (we'll learn more about this later).

Spectral type: O B A F G K M
Typical Mass (units of M�) 40 6 2 1.5 1.0 0.7 0.3

MV �5:8 �1:1 2.0 3.4 5.1 7.3 11.8

The Sun is a G star; at 10 pc it would be barely visible, mV = 5:1.

2.2.4 Spectra

Atoms in a gas can emit light at speci�ed frequencies (called spectral lines).

They can also absorb light at these frequencies. Whether they on balance

emit or absorb depends on their temperature, ionization, density, etc. So, a

spectrum might look like:
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absorption lines

Wavelength

emission lines

"Continuum level"

0

fλ

The units of f� are ergs per cm2 (collecting area) per s per wavelength. (This

is the same f� that we previously saw in the UVB magnitude table).

2.3 Velocity measurements

Velocity comes in two 
avors:

i) radial velocity: measured by Doppler shifts

ϕ

vr

vt

velocity v

��

�o
=
�� �o

�o
= z =

vr

c
in nonrelativistic limit

Between successive emissions of \crests" (time intervals �0=c) the emit-

ter moves a distance v=(�0=c), while the wave moves a distance �0, so

� = �0 + �0
v

c

)
� � �0

�0
=
v

c
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position
one crest

ago

position 
now

λ

v
cλ0λ0

Lab

Observed
∆λ

λλ0

λblue red

Redshift � z > 0
� object receding

Blueshift � z < 0
� object approaching

ii) proper motion

Here we observe motion of object in plane of the sky over time

(sometimes a very long time). We get vt = v sin� from the rate

of change of position on the sky if we know the distance to the

object.

We generally do know the distance (from parallax measurements

q.v.) because we can only see proper motions for nearby stars.

E.g., to see appreciable motion, say � 100/century, given that the

typical velocity of a star is � 10 km s�1, we can only measure vt

for stars within distances <

�
2 kpc, about one-�fth the distance to

the center of the galaxy.
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We can do better with VLBI radio techniques using masers (an as-

tronomical analog to a laser) because (1) we can determine angles

more accurately, and (2) maser velocities are larger than veloci-

ties of nearby stars. This has been used to get the distance to the

galactic center.

2.4 Distance measurements

The di�cult one. Problems measuring distances cause many arguments, e.g.,

the Hubble constant in cosmology. Various methods are used.

i) radar: round-time measurements (Venus, Moon). Okay for nearby

planets; used to set the scale of the solar system: 1 AU = 1:50 �

1011 m = 1:50� 1013 cm.

ii) triangulation: again okay for Venus, Moon. Taken with radar, it leads

to measurements of the AU.
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iii) parallax: (using Earth's orbit)

1 AU

p

p

p
p

to distant objects
(providing reference
frame)

Angles p are small (< 100) and the distance D = R=p. If R = 1 AU,

and p is measured in seconds of arc, then D comes out in parsecs. 1 pc

= distance at which 1 AU subtends 1 arcsec = 3:086 � 1018 cm.

iv) inverse square law and \standard candles"

If you know that a certain object has luminosity L (e.g., by look-

ing at similar objects near you) [L in erg/sec or watts], then the

distance of that object is given from its observed 
ux

F =
L

4�D2
:

(Remember F is in energy/sec/unit area.)

D

Sphere

Source
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This method works well for Cepheids (variable stars whose variability

period, obtained from long-time observations, is related to L. Thus, we

use the measured period to infer L and combine L with the observed

brightness to getD). RR Lyrae stars (another kind of variable star) and

Tully-Fisher galaxies (in which the galaxy's luminosity is inferred from

its rotational velocity) are used in a similar way. Note that extinction,

the absorption of light by intervening material, can cause problems.

v) angular sizes of \standard rods"

Same idea as iv): �nd a distant object that is the same as a nearby

one for which you know the size. If the nearby object has a true

size L, and the distant object has angular size �, then

D =
L

�
:

vi) Hubble law (galaxies and beyond)

Use the concept that the Universe is expanding. If the Hubble law has

been calibrated for you (this involves getting measurements of distances

of objects by independent means), then a radial velocity measurement

leads to the distance from

vr = HoD ;

where vr is the Doppler velocity, and Ho = (50{100) km s�1 pc�1. This

is usually written Ho = 100 h km s�1 pc�1, where h = (0:5{1.0). But

note that peculiar velocities and \gravitational redshifts" might cause

problems.
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Note that the use of method vi) gives an uncertainty of a factor � 2 in

the distance scale! This is a real problem for astrophysics. Ho is not well

known because of the di�culty in determining distances to distant galaxies

from methods iv) and v).
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